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The Hartree-Fock instability of twelve polyatomic systems is studied at the 
ab initio level. It is found that all the systems with at least one double bond, 
exhibit a non-singlet instability. On the other hand instabilities of singlet type 
as well as instabilities of non-real type appear only in a small number of cases. 
The existence of' these instabilities is discussed with respect to the location of 
low-lying excited states and to the weight of ionic structure. 
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1. Introduction 

Our purpose is to detect instabilities in some particular and favourable molecular 
systems at the ab initio level. 

The molecular orbitals ~Pi given by the Hartree-Fock method are obtained by 
assuming that the Slater determinant 4 o constructed from these ~pi's correspond to 
a stationary point of the energy function, 

c~(1)E=0 (1) 

Generally a few constraints are imposed on the ~0~'s, namely: 

th q)i's transform as the irreducible representations of the symmetry point 
group of the system (symmetry constraint); 
the (p~'s are either doubly or singly occupied (spin-constraint); 
the q~i's are real (except, possibly, for some orbitals belonging to multi- 
dimensional representations of high symmetry point groups where a complex 
form may be more convenient). 

These constraints are introduced in order to simplify the numerical calculation. 
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But it may happen that the determinant thus obtained (or restricted Hartree-Fock 
determinant ~RHF) corresponds to an energy higher than the energy of  the Slater 
determinant obtained without any constraint (or unrestricted Hartree-Fock 
determinant ~UHF). After L6wdin [7], such a case is called a symmetry dilemma. 

Moreover, some physical properties of the systems may be hidden by the con- 
straints introduced in the calculation: for instance, the alternation of  the bond 
lengths in the conjugated polyenes can be interpreted by the fact that the bond 
orders in the U H F  function [8-10] are themselves alternating, even when the 
bond lengths are kept all identical in the calculation. In contrast, the R H F  wave 
function (determined with all lengths identical) yields bond orders that are all 
equal and consequently no indication of bond alternation is apparent. 

Many studies have been made by semiempirical calculations 1 on the existence of  
a U H F  function with a lower energy than the R H F  one. On the other hand, ab 
initio studies have been made for atomic systems, for instance 0 2.  [16, 17], but 
not for molecules (see however Refs. [18, 19]). 

The study we undertook is limited by the following considerations: 
1) We considered only the so-called Hartree-Fock instability, excluding the study 
of  a local minimum. Particularly we have never tried, in the case where no in- 
stability is found, to determine whether it is the absolute minimum or a local one. 
And in the case where an instability is found we have neither tried (with the 
exception of  F2) to determine an actual minimum. In other words, our results are 
concerned only with local properties of the energy surface E(~) and not with the 
whole of the surface. 
2) We considered only systems with an even number of electrons and closed-shell 
R H F  wavefunctiens. 

2. Theory 

We begin by a brief summary of the theory of  Hartree-Fock instability. The general 
formulation of the instabilities has been given by Thouless [20] and in the density 
matrix formalism by Adams [21]. The distinction between the different cases of  
instability is due to (~i2ek and Paldus [12]. 

Let ~bRH v be the SCF restricted function of  a system, and ~p~ one orbital of ~ar~v- 
The constraint can be eliminated by a variation of ~0 i of the form: 

~oi ----+ ~p'i = ~ i +  ~ ~ptUu (2) 
1 

where qh is a virtual orbital and u u a coefficient giving the amplitude of  the variation. 

Considering the nature of the constraints imposed in the ORnV function calculation, 
the first-order variations of the energy with respect to the U'u'S are zero in a closed- 
shell system (this is a consequence of  the Brillouin theorem for any mixture of  two 

1 Most of them are described in the series of papers published by Kouteck~,, and by (~i~ek and Paldus 
in the last ten years; see Refs. [11-151 and references quoted therein. 
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orbitals (Pz and q)i whatever their spin and symmetry properties may be) and so the 
second-order variations of the energy is to be taken into account. 2 

Thus our problem, if the second-order variations of the energy are positive for 
every possible choice of the u'u's: 

632E]  

RHF 

the energy cannot decrease in the vicinity of ~bRn v and then ~bRH v is said to be 
"stable". 

Of course, stability and instability are purely local properties: the latter involves 
the existence ofa  4~uH v with a lower energy, in the vicinity of  ~RnV- On the contrary, 
if the ~bRn F is stable, it may happen that, in the u'u's space, the energy increases in 
the nearest vicinity of ~bRn v and then decreases and tends to another minimum : 
that can be called a situation of double well. This problem has not been studied 
here, because there is no easy way to detect it: it implies a very long calculation 
process because each point of the whole surface E = f ( ~ )  has to be tested. 

According to Thouless [20] and Paldus and 12i~ek [12], the second-order variation 
of the energy, with respect to the u'u's can be written in the following quadratic 
form �9 

2 1 

(D) is the column matrix of the u'u's, (D) is the complex conjugate of (D), and 
(A) and (B) are square matrices defined by' 

All, k j :  {(Dl [f[q~k) • i j  - -  {~Oi [Fl~pj) 6kt + (li, jk)  - (lk, j i)  
Bu, kj : (li, k j ) -  (lj, ki)  

F is the Fock operator corresponding to tPRI_IF , and 

(li, j k )=  f @(1)q,i(1)Upj(2)tPk(2 ) ~ dz 1 dz 2 
�9 F 1 2  

(i a n d j  denote the occupied orbitals, and k and l the virtual orbitals). 

According to (3), the detection of instability reduces to a diagonalization: if all 
the eigenvalues of the matrix: 

are positive, all the second-order variations of the energy at the RHF point are 
positive and q~RHF is stable. On the other hand, if one or several eigenvalues are 

2 For open-shell systems, the consequences of  the Brillouin theorem are not the same as in closed- 
shell systems and some of  the first-order variations are not  zero. Consequently, it is always possible to 
assert that, in a radical system, a U H F  function with a lower energy than the R H F  one, exist without 
considering the second-order variations of  the energy. 
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negative, ~bRH v is unstable and the corresponding eigenvectors suggest a starting 
direction towards a lower energy. 

If ~RHF is a real and closed-shell determinant, the eigenvalues of E" can be classified 
in three types. In order to do that, it is convenient to make the following trans- 
formation on the u};'s. 

uT, = (u, , , , ,  + u , ~ , , e ) l / , / 5  
bil l  - -  

tz_ ut <i#)l/ /- ~ bil l  - -  (bl l f l ,  i~ - -  

, 3 - -  U l , ,  i#  ) i / x / ~  IJli  - -  (bl l f l ,  let - -  

(5) 

where u~,. ;, describes the mixture of  the spin orbital ~0~.cr(~) and the spin orbital 
~0;-~(~), 

Furthermore, one may notice that the eigenvectors D of E" are eigenvectors of  
either the (,4 + B )  matrix or the ( A - B )  matrix, consequently one has three types 
of  instability. 

2.1. Instabilities o f  the First Type (Singlet Instabilities) 

The corresponding eigenvalues of E" are obtained by diagonalizing the matrix 

E,,S=A~+BS 

A~i, kj = ( qh Irlq>k) 6~j-- ( q>~ IFlq> j ) (Skz + 2(li, jk)  - (lk, j i )  (6) 

B~], kS = 2(li, jk)  - (lj, ik) 

The eigenvectors of E" are real and are associated to the u~. 

The corresponding variations of the ~bgHv function are real and preserve the 
closed-shell nature of the function. Such variations are particularly interesting if 
they destroy the symmetry properties occurring when ~p; and q~ belong to different 
symmetry representations. 

2.2. Instabilities o f  the Second Type (Non-Singlet or Triplet) 

The corresponding eigenvalues of E" are obtained by diagonalizing the matrix 

E "  = A' +B'  (7) 

A~,,~j= (~0tlFl(Pk) 6~k-- (~o, IFlq>j) C~kt--(Ik, ij) 

n '  - -  . ,  ~ j -  - ( l j ,  i k )  

These eigenvalues have a threefold degeneracy and the corresponding three 
eigenvectors are obtained from a unique eigenveetor of E"', by using respectively 
u~, u',~ and ut;~: two of these variables are real and the third is purely imaginary. 
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For the wavefunctions themselves one then has : 
with u~l: the orbitals with ~ and fl spin values are no longer identical and the 
resulting wavefunction is an eigenfunction of Sz, but not of S ~. 
with u~ and u~ : the orbitals are no longer eigenfunctions ofS~, so the resulting 
wavefunction is neither an eigenfunction of S~, nor of S 2. 
with u~t~: the orbitals and the resulting wavefunction are no longer real. 

For the three possibilities the symmetry constraint may be retained or not accord- 
ing to whether ~o~ and q)/belong to the same symmetry representation or not. 

2.3. Instabilities of  ~'he Third Type ("non-real") 

The eigenvalues of E" are obtained by diagonalizing the matrix: 

E"C = A S - B S = A t - B  t (8) 

These eigenvalues have a fourfold degeneracy, and the eigenvectors are obtained 
by using the variables ius, iutl, iut2 and Jut3. Three of them are purely imaginary and 
the fourth one is real. 

The spin and symmetry properties of the orbitals are the same as in the first and 
second types, but here the variations of the orbitals are imaginary in the cases 
where they were real, and are real in the case where they were imaginary. 

3. Results and Discussions 

In the results presented in Table i, one may notice a fair diversity in the examples 
of non-singlet instability, but only three "non-real" instabilities (MgO, O22-, 03) 
and only two singlet instabilities (O~- and 03). 

3.1. Singlet Instability 

3.1.1. Singlet Instability and Near Degeneracy Problem 

For the sake of simplicity, let us first consider the diagonal matrix elements o f E  "s. 
We see, from (6), that they look very much like excitation energies (it is the same 
for E "~ and E"r In fact one has 

Et;~,u = e t -  el+ Ju + 3Ku 
= ldE~,+ X~ (9) 

~AE u represents the excitation energy from the ground state to the singlet excited 
state resulting from an excitation in the q)~ orbital; et and el represent the energies 
of the orbitals ~0 z and q)~ respectively; Jn and K u are the Coulomb and exchange 
integrals. 

Consequently, in this type of  instability the existence of  a degeneracy or a near 
degeneracy between ~RHV and another function is favourable for instability: these 
degeneracies may happen in the case of a long bond (because, when a bond is 
stretched, the energy of the ~bRn v rises too much and crosses some excited states), 
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Table 1. Results of instability calculations 
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Molecule Basis Energy Lowest eigenvalues of E" Geometry Symmetry 

Non- After 
Singlet Non-real singlet Initial insta- 

bility 

F 2 GTO ~ -198.7048 0.1966 0.1435 -0.1019 d=2.68 a.u. D~h C| 
double 

MgO STO d -274.340 0.0362 -0.0022 -0.0529 d=3.30 a.u. C~v none 
double { -0.0022 -0.0529 

-0.1876 
O~- STO b -149.3086 -0,0025 -0.0187 -0.0083 d=2.815 a.u. Dmh none 

double ( -0,0025 -0.0187 -0.0083 
+ ((Pn 0.3) - 0.0247 

-0.0381 
-0.0381 
-0.0588 

N204 GTO a -406.3786 0.1398 0.1194 -0.0404 Ref. [1] D2h C s 
minimum - 0.1142 

-0.1153 
Ethylene GTO" - 77.6418 0.3482 0.2727 -0.0217 Ref. [2] D2h C2v 

minimum 
GTO ~ - 78.00118 0.3329 0.2659 -0.0112 Ref. [2] D2h C2v 
double ( 
GTO * - 78.01334 0.3026 0.2425 -0.0115 Ref. [2] D2h C2v 
triple 

Benzene GTO a -229.701 0.2021 0.2423 -0.0418 Ref. [3] O6h O3h 
minimum 

Benzene GTOminimum -229.572 0.2627 0.2771 -0.0171 Ref. [4] C2~ none 
Dewar - 0.0270 
Benzvalene GTO minimum -229.549 0.2682 0.2331 -0.0238 Ref. [5] C2~ none 
Prismane GTO minimum -229.508 0.3294 0.3334 0.1462 Ref. [6] D3h D3h 
Pentalene GTO minimum -304.995 0.0716 0.0268 -0.0927 f D2h C s 

- 0.2392 

a Clementi, E.: Acta. Phys. 27, 494 (1969). 
b Clementi, E. : Table of atomic wavefunctions, supplement to paper: Ab initio computations in atoms 

and molecules, IBM Journal 9, 2 (1965). 
c Huzinga, S.: J. Chem. Phys. 42, 1293 (1965). 

Basis a), increased from results of Yoshimine computations: J. Phys. Soc. Japan 25, 1100 (1968). 
c Basis c) from Huzinaga: contractions are given in Table 3. 

Pentalene computation was made in a Dab geometry: C-C = 1.42 ~,, C - N =  1.08 ,~, CCC= 108 ~ 

in t h e  case  o f  a n  excess  o f  e l e c t r o n s ,  f o r  i n s t a n c e  in  n e g a t i v e  i ons  ( b e c a u s e  t he  

h i g h e s t  e n e r g y  levels  a r e  d e n s e  in t h i s  case) ,  in  t he  ca se  o f  t he  rc s y s t e m s ,  a n d  

n a t u r a l l y  a l so  in s o m e  p a r t i c u l a r  cases  t h a t  a r e  d i f f icul t  t o  c o n n e c t  to  a g e n e r a l  rule .  

T h e  c o n d i t i o n  o f  d e g e n e r a c y  is p a r t i c u l a r l y  r e s t r i c t i v e  for  t he  s ing le t  t y p e  

i n s t a b i l i t y .  T h e  c o n d i t i o n  E[~u < 0  m e a n s  1AE u < - K u  a n d  so t h e r e  m u s t  exis t  

o n e  s t a t e  b e l o w  t h e  R H F  s t a t e  s e p a r a t e d  f r o m  i t  b y  a n  e n e r g y  l a r g e r  t h a n  K u. 

S u c h  a s i t u a t i o n  is n e v e r  r e a l i z e d  in u s u a l  s y s t e m s  b e c a u s e  I AE u > O. 
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3.1.2. Singlet Instability and the Weight of Ionic Structures 

It is possible to connect this property to the excessive weight of the ionic contribu- 
tion in the usual q~{nv- Let us consider a two-center system, (the centers being 
atoms or more generally fragments) and the atomic or hybrid orbitals )fi (left hand 
side) and Zr (right hand side) bonding the two centers. Suppose that Z~ and Zr are 
equivalent and that their overlap can be neglected. Using the two following 
molecular orbitals 

1 1 

one has for the RHF wave function: 

~ - v = ( N ! ) - l / 2 1 -  - �9 q~i ~ i - - - [  

Consider, now, singlet type variations of the wavefunction. The expression of the 
new wavefunction r in terms of Uki'S , limited to the second order is: 

�9 ' = { 0 + u ~ , [ I . . .  ~ok c p i . . . 1 + 1 . . .  ~0i ~ . . . I ] + u # , l . . .  ~o~ cp~...I} 1 - - - '  

or, in terms of Z~ and Zr: 

/,/2 2 

The weight of the covalent contribution to the wavefunction ~' is equal to (�89 u~) 
instead of just �89 in CRHV and the weight of the total ionic contribution is equal to 

1 2 (ibt (~+ Ugh) in instead of �89 in ~. Furthermore, the left-right symmetry is broken 
since the coefficients of I . . .  Zl Zl. �9 �9 I and [...Z~ ~ .  - �9 [ are not equal. Probably, 
this increase of the ionic contribution is energetically unfavourable and it is not 
offset by the decreasing of the symmetry restriction (at least, in the systems we 
have studied). 

3.1.3. Influence of the Off-Diagonal Terms 

Let us consider now the influence of the off-diagonal terms of E". If  we argue in 
terms of localized orbitals (as ~RHF is invariant in any unitary transformation on 
the orbitals, so E" and its eigenvalues are invariant), we have 

G~, j,j ,~ 4( i* i, y*j ) 

i*i : * : ' -  f cpi,(l)cPi(1)cpj,(2)cpj(2 ) 1 dz I dz 2 , J  J J - -  
*' ]'12 
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where ~Og and q~j, are respectively the bonding and anti-bonding orbitals of the 
same bond. But one has typically 

( i ' i ,  j*j) /1AEi, i  ~0 .1  

and consequently, it is impossible for a single off-diagonal term to lead to a 
negative eigenvalue. For  cyclic polyenes, it has been evaluated [11, 14] with semi- 
empirical calculations that a negative eigenvalue appears with a rather large ( ~  20) 
number of  carbon atoms. At the ab initio level a similar situation is expected to 
appear when the number of  the off-diagonal terms is large enough to counter- 
balance the fact that 1AEi,i=0 (in terms of localized orbitals) or equivalently 
when e i , -  eg becomes small enough (in terms of  canonical orbitals). However this 
situation has been met in neither of  the cases studied here (cf. Sect. 3.1.6 below). 

By these considerations, we attempt to explain the very small number of  singlet 
instabilities we met. Let us try to explain the two instabilities (03 and 022- ) 
obtained in a full HF instability calculation (i.e. the matrix E "~ have been exactly 
diagonalized). 

3.1.4. 

For ozone, RHF wavefunctions have been calculated in a minimum GTO basis set, 
for three electronic configurations studied by Fischer-Hjalmars [22], whose 
global symmetry is 1A 1 (see Table 2). The molecule geometry was an isosceles 
triangle with the largest angle equal to 116 ~ 49' [23]. In Table 2, we see that the 
configuration III with the lowest energy does not show any singlet instability in 
conformity with the above analysis. On the other hand, the configurations I and II 
which are higher in energy do present a singlet instability. However, in the case of  
the configuration I, the eigenvector of E "~ corresponding to the negative eigen- 
value is essentially built on the mixture of  2b 2 and 4al : the instability tends to 
change the configuration I into the configuration III, and the same holds for the 
configuration II. As the ~RHF associated to the configuration III is stable, an 

Table 2. Instability calculations for ozone in various electronic configurations 

I II III 
..4bl,6a~,la ~ ..la~, 6a~, 2b~ Configurations ..la~, 4b~, 2b~ 2 z 

Ea.u. - 223.385 - 223.323 - 223.508 

-0.0093 -0.0575 -0.0186 
-0.1391 -0.1701 -0.2579 
-0.2936 -0.3875 

-0.0045 - 0.0049 
-0.0993 -0.0632 0.0219 

-0.1327 

-0.0621 -0.1004 0.0588 
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unrestricted Hartree-Fock calculation without symmetry restriction, but with 
spin restriction would probably lead to the same wavefunctions as in the RHF 
calculation. Such an instability may be coined "filling up instability": it is not 
connected with the existence of another wavefunction with lower symmetry and 
energy but only with another way of filling the symmetry orbitals. 

However, the present calculation does not exclude that a UHF function having 
lower energy than the configuration III may exist. 

3.1.5. 

For 0 2 - several RHF calculations were made in an STO double-( basis enlarged 
by more and more diffuse functions for 2p~ and 2p~, (correlatively, the energy 
decreases). The HF singlet instability appears with (2p = 0.3. As the (2p decreases, 
the two highest occupied orbitals (To, and ~'u) become more and more diffuse. 
Moreover, the instability direction corresponds to a transformation of the ~u 
orbital into a more diffuse orbital and a transformation of the ~'u orbital into a 
more concentrated orbital: these transformations lead to a loss of a cylindrical 
symmetry. This result may be explained by assuming that the energy of a con- 

2 ~ 2  2 figuration J. . .  zo 7c, . . . I  of O2 is lower than the energy of the present con- 
figuration of O2- : in our calculation of 022 -, two electrons tend to fly away from 
the molecule, in the limits that are allowed by our LCAO basis (in a complete 
basis set these electrons would be completely ejected). This explanation must be 
regarded only as a conjecture but, it is consistent with the calculation of Delgado 
and Prat [17] on the atomic ion O 2-. 

3.1.6. The Polyenes 

In our results, no evidence of singlet instability appears for polyenes but it should 
be noted that in semiempirical theories there is a singlet instability only for systems 
with more than 20 rc electrons and we have not tried to compute such large systems. 
In fact, the value that we find for the lowest eigenvalue )?o o fE  "s decreases when the 
size of the system increases (ethylene, benzene, pentalene) but it cannot be con- 
cluded from this behaviour that 2~ becomes actually negative for larger systems, 
although it is generally concluded that it must be so on the basis of general con- 
siderations on the orbital spacing and on the behaviour of the integrals. 

In the case ofpentalene, semiempirical calculations with optimization of the geo- 
metry [24, 25] indicate that the alternant conformation has a lower energy than 
the Dzh conformation. In spite of this we have found here no trace of singlet 
instability in the Dzh geometry. Similarly no singlet instability is found in semi- 
empirical calculation with D2h geometry when spectroscopic parameters are used. 
It may well be that the RHF function with Dzh symmetry does not correspond to 
the absolute HF  minimum in D2h geometry. 
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3.2. N o n - S i n g l e t  (or Triplet)  Ins tab i l i t y  

3.2.1. General Discussion 

The large diversity of non-singlet instability in our results, may be correlated with 
the following properties: 

1) A calculation similar to the one we made for the singlet instability shows a 
decreasing of the ionic contribution in the case of the non-singlet instability: for 
the system described by the MO's of the form (10), this contribution is changed 
from �89 (in ~RHF), to �89 2 in the transformed wavefunction ~b' for each of the 
three variables, u~l and ur2 (real) and ut3 (purely imaginary). 

2) The relative abundance of non-singlet instabilities can be understood by con- 
sidering the diagonal terms of the matrix E"t of the Eq. (7), we have: 

E ;~I li = e l -  e i - Ju - Ku = 3 A Eil - Ku (11) 

As in the singlet case, a degeneracy or a near degeneracy in the SCF levels is 
favourable to instability. In the present case, however, the condition : 

e l -  e l -  Ju < 0 (12) 

is sufficient (in the singlet case, it is necessary but not sufficient) and in fact, it is even 
not necessary, for it is possible to obtain an instability with 

e t - e i - J u > O  

assuming that this quantity has a small positive value (smaller than Ku). 

This particular situation is well illustrated by the study of the dissociation of H 2 . 
It is well known that the RHF behaviour is not correct as concerns its radicalic 
dissociation, because the ionic contribution still has the value of 1/2 even when the 
two atoms are completely separated, but that this contribution tends to zero in a 
SCF calculation without constraints. We have seen that the (~RHF of this system 
never shows singlet instability. In addition, as shown in Fig. 1 non-singlet 
instability appears for R > R1 = 2.3 a.u. For large separations, the SCF triplet is 
lower in energy than ~bRn v, but for middle separations the same triplet is above 
the (]~RHF function, and there is still a non-singlet instability; for separations near 
the equilibrium distance (1.43 a.u.), the triplet state is too high and there is no more 
instability. In most of the examples of non-singlet instability studied here, the 
lowest triplet state is above the calculated RHF state (except MgO and O3). 

3.2.2. Diradicals 

The fact that non-singlet instability is obtained even when the triplet state is above 
the 4~RHF shows that it is not possible to establish an unambiguous relation between 
the existence of non-singlet instability and the biradical structure of a system. 

However, the systematic study of the nature of the reactional intermediary assumed 
by Fukutome [26] and Yamaguchi and Fueno [27, 28] illustrates the fact that the 
crossing of MO energy levels along the reaction path proves very probably the 
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Ea. u' 
-0.8 

-0.9 

_1.0 

_1.1 

_1.2 

t ~oj 
1 

-1 

= - - '  
Ra.u 

k, 
I - ~, I - -4--  I -I 
1 R ' H I ' ~ ~ I  3 5 7 R a .u 

Fig. 1. Energy of  H 2 molecule versus interatomic distance, in an uncontracted 6s-GTO basis; and 
lowest eigenvalue of E"' versus the interatomic distance 

existence of a biradical intermediary. In another connection, a crossing of MO 
energy levels implies non-singlet instability. So, we have here a typical case where 
biradical character and non-singlet instability are simultaneously present, without 
any implication relation between both properties. In fact, level crossing is a more 
restrictive condition than non-singlet instability. 

3.2.3. The case of o Systems 

As far as usual molecules are concerned, (and not reaction intermediaries) the 
triplet state is generally too high and the exchange integral K too small in the o 
systems. For example in C-C or C-H bonds, we have 

3.dEli~, 1 a . u .  g/i~-~0.5 a . u .  

and consequently, non-singlet instabilities in a system of hydrocarbons may only 
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be expected in large molecules (as singlet instability in polyenes). This problem 
does not seem to have been studied so far. 

We found only three non-singlet instabilities in the a systems of the following 
compounds: N204, F2 and MgO. The molecule N204 was selected because of the 
particular electronic structure with an abnormally long N-N bond [31-33]. The 
two other cases, F 2 and MgO, have to be connected with the non-existence of a 
binding energy at the SCF level. For F2, a UHF calculation was made, in order to 
compare it with a CI: the decrease in energy AEuHF is sevenfold smaller than the 
AEc~ obtained with a CI involving the same orbitals, 

AEuHF= --0.010 a.u. 

AEcI = -- 0.073 a.u. 

and so it would be quite illusive to hope that a UHF calculation can serve as 
substitute for CI (note that neither the UHF nor CI calculation performed here 
predict the correct sign of the dissociation energy). 

3.2.4. The Case of the ~z Systems 

If  now rc systems are considered, triplet states are low and simultaneously the 
corresponding exchange integrals are particularly large (this is to be connected with 
a larger correlation energy in rc systems than in o- systems). Correlatively, non- 
singlet instability in the z system is found in all the studied examples: ethylene, 
benzene, Dewar benzene, benzvalene, pentalene, N204, 03 and O~-. These 
results are in perfect agreement with the results of semiempirical calculations of 
Paldus and Ci~ek [12-15], Fukutome [8], Kouteck3) [11], etc. So, it seems that 
non-singlet instability exists in any rc system, even in non-conjugated ones. In 
ethylene, the instability direction corresponds to the vanishing of the left-right 
symmetry, and consequently the two fragments -CH2 are no longer equivalent; 
yet the a-re distinction is preserved, at least at this stage of the calculation (of course, 
we cannot deduce from the present study what would happen if a true UHF 
minimization was achieved). 

In more complicated rc systems, the instability direction corresponds to the 
mixture of bonding and antibonding rE orbitals of the whole rc system, and with 
the same reservations as in ethylene, the ~r-~ distinction is preserved. 

Moreover, it seems, from calculations on the allyl radical [18, 19], that the size 
and the particular choice of the AO basis are very important in this problem. As 
all the above calculations were made in a minimum basis set, we tried other basis 
sets, on the example of ethylene. We performed calculations in the double and 
tri-~ GTO basis presented in Table 3. As shown in Table 1, the total energy of the 
molecule decreases with the increasing of the basis size, but there is always a 
non-singlet instability. 

Other examples of non-singlet instabilities in K-systems are given in inorganic 
systems: 03, O2 z-.  
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Table 3. Contractions for extended basis set of 
Gaussian functions used in the calculations of 
ethylene 

Gaussian Double-zeta Triple-zeta 
exponents contraction contraction 

C S 4232.61 0.002336 0.002336 
634.882 0.017884 0.017884 
146.097 0.086818 0.086818 
42.4974 0.298521 0.298521 
14.1892 0.686791 0.686791 
5.14773 0.772924 1.0 
1.96655 0.257253 1.0 
0.496240 1.0 1.0 
0.153310 1.0 1.0 

P 18.1557 0.0391963 0.0391963 
3.98640 0.244143 0.244143 
1.14293 0.816773 0.816773 
0.359450 0.668140 1.0 
0.114600 0.417933 1.0 

H S 13.3615 0.032828 0.032828 
2.01330 0.231208 0.231208 
0.453757 0,817238 1.0 
0.123317 1,0 1,0 

In ozone, non-singlet instabilities exist in every configuration we calculated. As 
far as the lowest configuration is concerned, the following remarks can be made: 

O3 
/ ~  6=116~ 49 ' 

O 1 .................. 0 2 

l) The bonding and antibonding a orbitals, respectively in symmetry representa- 
tion al and bl, are both occupied and consequently there is no "a-bond" between 
the atoms O1 and 02 at the RHF stage. 

2) In the 7z-system, one orbital of  symmetry a 2 antibonding between O1 and O2 is 
occupied, and the instability direction corresponds to the mixture of  this orbital 
a2 with a virtual n orbital of symmetry b2, bonding between O1 and 02.  

This means that the instability tends to transform ~RHV into a wavefunction cor- 
responding to the general biradical description of  ozone [30] : however, it should 
not be concluded that ozone could have a paramagnetic structure. 

The instability direc'tion for O 2- corresponds, as for the singlet case, to a loss of the 
cylindrical symmetry according to the following mixtures: 

Singlet instability case: 

r ! " r ~  
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Non-singlet instability case: 

t ! 

In the singlet case the above mixing leads 1) to an orbital which is more diffuse 
than re. and 2) to an orbital which is more concentrated than r~'.. But the effect of 
the mixture cannot be described in such simple terms in the non-singlet case 
because the concerned MO's have different spin function. And so the non-singlet 
instability of 022 cannot be related to an ionization as simply as in O 2- [17]. 

3.3. Instability of  the Third Type 

The "non-real" instability is an intermediate case between singlet and non-singlet 
instabilities: this can be seen by considering the ionic contribution weight (the 
ionic contribution is equal to 0.5 for each 4'  functions as for 4~RnF (cf. Sect. 3.1.2.) 
corresponding to the four u variables concerned here) as well as by considering 
the diagonal matrix elements of E"C: 

E ~ ' ~ , k i = e k - - e i - -  Jik + Kik  

From this last expression, we can deduce that singlet instability implies non-real 
instability, that itself implies non-singlet instability, (with the reservation that the 
off-diagonal terms influence in the same way the results for the three cases). 

It may seem surprising that non-real instability is more difficult to obtain than 
non-singlet instability, since a priori a supplementary restriction - the real nature 
of the MO's - is dropped. However, we may notice that one of the variables d u 
associated with the so called non-singlet instability, is purely imaginary, and that 
one of the variables u~ associated with the so-called non-real instability, is real. 
Furthermore, the MO variations are either real, or purely imaginary and the 
former type of variation is not more particular than the latter. 

We obtained non-real instabilities with O3, 022- and MgO. In the latter case, the 
instabilities are gathered in Table 4 where the diagonal terms of E "s, E"t and E ''~ 
are given. We see that the influence of the off-diagonal term is smaller than 0.07 a.u. 
Moreover, for the two mixtures illustrated in Table 4, the terms ( A E - J )  are very 
small: as K2~,7 ~ is very small too, the difference between the corresponding 
diagonal elements of E "~ and E"t are not important and instabilities of these two 

Table 4. Diagonal terms of E" matrix for different types of instability in MgO: the values in italics 
correspond to the cases where a negative eigenvalue of E" is found 

Mixture of orbitals El' E[ E~' 
involved by instability Non-singlet Non-real Singlet 

6a ~ 7a - 0 . 1 4  0.10 0,33 
2~r ~ 7~ 0.03 0.05 0.07 
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types are obtained;  this fact does not  occur  for the mixture 6a-7a because the 
cor responding  K6~,-I~ is bigger. 

Fur the rmore  the starting direction o f  instability can suggest that  the (2~-7o) 
diexcitation is an impor tan t  c o m p o n e n t  o f  a configurat ion interaction, while the 
actual  CI  calculation, per lbrmed by H u r o n  and Rancurel  [29] shows that it is 
negligible compared  with the contr ibut ion o f  the (6a-7a) diexcitation. 

4. Conclusion 

Our  results show the existence o f  Har t ree -Fock  instabilities in ab initio calculations 
for  molecular  systems of  small and medium size, and so lead to a generalization o f  
previous semiempirical [10-15]  and ab initio results [16, 17]. 

In the present calculations, no evident correlat ion has been found between 
instability and physical properties o f  the molecule in contrast  with the correlation 
found  in the case o f  polyenes. 

Fur thermore ,  mos t  o f  the instabilities that  we have found belong to the non-singlet 
type. Indeed singlet instability can occur  only if an increasing weight o f  the ionic 
contr ibut ion in the wavefunct ion has a favourable  effect on the energy or  if it is 
balanced by other  factors ( s y m m e t r y . . . ) .  On the cont ra ry  the weight o f  the ionic 
contr ibut ion decreases in non-singlet type variations. 

The main cause o f  instability at the R H F  level is a degeneracy or  a near degeneracy 
o f  the energy o f  q~RI~V with another  configuration,  or  an inversion o f  states, or a 
large electronic repulsion: this occurs in ~ systems and in negative ions, and in 
some less foreseeable cases as MgO and F 2 (it is to be noticed that in these last two 
cases ~RHV provides a negative bond  energy and ~buH v too, so that  a U H F  calcula- 
t ion cannot  be used as substitute for a CI). The inversion o f  states essentially 
appears  in the "filling up instabilities" in which the U H F  function is not  more  
general than the initial R H F  function, but  is constructed with different set o f  
occupat ion  numbers  for the various symmetries.  
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